Copied to
clipboard

G = C23.739C24order 128 = 27

456th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.739C24, C22.5122+ 1+4, C22.3932- 1+4, (C22×C4).250C23, (C2×C42).745C22, C2.C42.442C22, C23.81C23.52C2, C23.83C23.49C2, C23.63C23.63C2, C23.65C23.89C2, C2.7(C22.58C24), C2.67(C22.35C24), C2.73(C22.57C24), C2.62(C22.56C24), C2.130(C22.36C24), C2.130(C22.33C24), (C2×C4).261(C4○D4), (C2×C4⋊C4).548C22, C22.587(C2×C4○D4), SmallGroup(128,1571)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.739C24
C1C2C22C23C22×C4C2×C4⋊C4C23.83C23 — C23.739C24
C1C23 — C23.739C24
C1C23 — C23.739C24
C1C23 — C23.739C24

Generators and relations for C23.739C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=1, d2=ca=ac, e2=g2=a, f2=b, ab=ba, ede-1=ad=da, ae=ea, gfg-1=af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, dg=gd, geg-1=abe >

Subgroups: 292 in 162 conjugacy classes, 84 normal (82 characteristic)
C1, C2, C4, C22, C2×C4, C2×C4, C23, C42, C4⋊C4, C22×C4, C2.C42, C2×C42, C2×C4⋊C4, C23.63C23, C23.65C23, C23.81C23, C23.83C23, C23.739C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.33C24, C22.35C24, C22.36C24, C22.56C24, C22.57C24, C22.58C24, C23.739C24

Character table of C23.739C24

 class 12A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P4Q4R
 size 11111111444444888888888888
ρ111111111111111111111111111    trivial
ρ211111111-1-111-1-11111-1-1-1-111-1-1    linear of order 2
ρ31111111111-1-1-1-1-111-11-11-1-11-11    linear of order 2
ρ411111111-1-1-1-111-111-1-11-11-111-1    linear of order 2
ρ511111111111111-1-111-1-1-1-1-1-111    linear of order 2
ρ611111111-1-111-1-1-1-1111111-1-1-1-1    linear of order 2
ρ71111111111-1-1-1-11-11-1-11-111-1-11    linear of order 2
ρ811111111-1-1-1-1111-11-11-11-11-11-1    linear of order 2
ρ91111111111111111-1-111-1-1-1-1-1-1    linear of order 2
ρ1011111111-1-111-1-111-1-1-1-111-1-111    linear of order 2
ρ111111111111-1-1-1-1-11-111-1-111-11-1    linear of order 2
ρ1211111111-1-1-1-111-11-11-111-11-1-11    linear of order 2
ρ1311111111111111-1-1-1-1-1-11111-1-1    linear of order 2
ρ1411111111-1-111-1-1-1-1-1-111-1-11111    linear of order 2
ρ151111111111-1-1-1-11-1-11-111-1-111-1    linear of order 2
ρ1611111111-1-1-1-1111-1-111-1-11-11-11    linear of order 2
ρ172-22-22-22-2-2i2i2-2-2i2i000000000000    complex lifted from C4○D4
ρ182-22-22-22-22i-2i2-22i-2i000000000000    complex lifted from C4○D4
ρ192-22-22-22-2-2i2i-222i-2i000000000000    complex lifted from C4○D4
ρ202-22-22-22-22i-2i-22-2i2i000000000000    complex lifted from C4○D4
ρ214-4-4-444-44000000000000000000    orthogonal lifted from 2+ 1+4
ρ22444-4-44-4-4000000000000000000    orthogonal lifted from 2+ 1+4
ρ2344-444-4-4-4000000000000000000    symplectic lifted from 2- 1+4, Schur index 2
ρ244-444-4-4-44000000000000000000    symplectic lifted from 2- 1+4, Schur index 2
ρ254-4-44-444-4000000000000000000    symplectic lifted from 2- 1+4, Schur index 2
ρ2644-4-4-4-444000000000000000000    symplectic lifted from 2- 1+4, Schur index 2

Smallest permutation representation of C23.739C24
Regular action on 128 points
Generators in S128
(1 77)(2 78)(3 79)(4 80)(5 127)(6 128)(7 125)(8 126)(9 39)(10 40)(11 37)(12 38)(13 20)(14 17)(15 18)(16 19)(21 28)(22 25)(23 26)(24 27)(29 36)(30 33)(31 34)(32 35)(41 46)(42 47)(43 48)(44 45)(49 54)(50 55)(51 56)(52 53)(57 62)(58 63)(59 64)(60 61)(65 70)(66 71)(67 72)(68 69)(73 97)(74 98)(75 99)(76 100)(81 86)(82 87)(83 88)(84 85)(89 94)(90 95)(91 96)(92 93)(101 108)(102 105)(103 106)(104 107)(109 116)(110 113)(111 114)(112 115)(117 124)(118 121)(119 122)(120 123)
(1 106)(2 107)(3 108)(4 105)(5 100)(6 97)(7 98)(8 99)(9 66)(10 67)(11 68)(12 65)(13 47)(14 48)(15 45)(16 46)(17 43)(18 44)(19 41)(20 42)(21 55)(22 56)(23 53)(24 54)(25 51)(26 52)(27 49)(28 50)(29 63)(30 64)(31 61)(32 62)(33 59)(34 60)(35 57)(36 58)(37 69)(38 70)(39 71)(40 72)(73 128)(74 125)(75 126)(76 127)(77 103)(78 104)(79 101)(80 102)(81 115)(82 116)(83 113)(84 114)(85 111)(86 112)(87 109)(88 110)(89 123)(90 124)(91 121)(92 122)(93 119)(94 120)(95 117)(96 118)
(1 79)(2 80)(3 77)(4 78)(5 125)(6 126)(7 127)(8 128)(9 37)(10 38)(11 39)(12 40)(13 18)(14 19)(15 20)(16 17)(21 26)(22 27)(23 28)(24 25)(29 34)(30 35)(31 36)(32 33)(41 48)(42 45)(43 46)(44 47)(49 56)(50 53)(51 54)(52 55)(57 64)(58 61)(59 62)(60 63)(65 72)(66 69)(67 70)(68 71)(73 99)(74 100)(75 97)(76 98)(81 88)(82 85)(83 86)(84 87)(89 96)(90 93)(91 94)(92 95)(101 106)(102 107)(103 108)(104 105)(109 114)(110 115)(111 116)(112 113)(117 122)(118 123)(119 124)(120 121)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 93 77 92)(2 89 78 94)(3 95 79 90)(4 91 80 96)(5 114 127 111)(6 112 128 115)(7 116 125 109)(8 110 126 113)(9 26 39 23)(10 24 40 27)(11 28 37 21)(12 22 38 25)(13 36 20 29)(14 30 17 33)(15 34 18 31)(16 32 19 35)(41 57 46 62)(42 63 47 58)(43 59 48 64)(44 61 45 60)(49 67 54 72)(50 69 55 68)(51 65 56 70)(52 71 53 66)(73 81 97 86)(74 87 98 82)(75 83 99 88)(76 85 100 84)(101 124 108 117)(102 118 105 121)(103 122 106 119)(104 120 107 123)
(1 114 106 84)(2 81 107 115)(3 116 108 82)(4 83 105 113)(5 117 100 95)(6 96 97 118)(7 119 98 93)(8 94 99 120)(9 29 66 63)(10 64 67 30)(11 31 68 61)(12 62 65 32)(13 55 47 21)(14 22 48 56)(15 53 45 23)(16 24 46 54)(17 25 43 51)(18 52 44 26)(19 27 41 49)(20 50 42 28)(33 40 59 72)(34 69 60 37)(35 38 57 70)(36 71 58 39)(73 121 128 91)(74 92 125 122)(75 123 126 89)(76 90 127 124)(77 111 103 85)(78 86 104 112)(79 109 101 87)(80 88 102 110)
(1 20 77 13)(2 17 78 14)(3 18 79 15)(4 19 80 16)(5 11 127 37)(6 12 128 38)(7 9 125 39)(8 10 126 40)(21 85 28 84)(22 86 25 81)(23 87 26 82)(24 88 27 83)(29 119 36 122)(30 120 33 123)(31 117 34 124)(32 118 35 121)(41 102 46 105)(42 103 47 106)(43 104 48 107)(44 101 45 108)(49 113 54 110)(50 114 55 111)(51 115 56 112)(52 116 53 109)(57 91 62 96)(58 92 63 93)(59 89 64 94)(60 90 61 95)(65 73 70 97)(66 74 71 98)(67 75 72 99)(68 76 69 100)

G:=sub<Sym(128)| (1,77)(2,78)(3,79)(4,80)(5,127)(6,128)(7,125)(8,126)(9,39)(10,40)(11,37)(12,38)(13,20)(14,17)(15,18)(16,19)(21,28)(22,25)(23,26)(24,27)(29,36)(30,33)(31,34)(32,35)(41,46)(42,47)(43,48)(44,45)(49,54)(50,55)(51,56)(52,53)(57,62)(58,63)(59,64)(60,61)(65,70)(66,71)(67,72)(68,69)(73,97)(74,98)(75,99)(76,100)(81,86)(82,87)(83,88)(84,85)(89,94)(90,95)(91,96)(92,93)(101,108)(102,105)(103,106)(104,107)(109,116)(110,113)(111,114)(112,115)(117,124)(118,121)(119,122)(120,123), (1,106)(2,107)(3,108)(4,105)(5,100)(6,97)(7,98)(8,99)(9,66)(10,67)(11,68)(12,65)(13,47)(14,48)(15,45)(16,46)(17,43)(18,44)(19,41)(20,42)(21,55)(22,56)(23,53)(24,54)(25,51)(26,52)(27,49)(28,50)(29,63)(30,64)(31,61)(32,62)(33,59)(34,60)(35,57)(36,58)(37,69)(38,70)(39,71)(40,72)(73,128)(74,125)(75,126)(76,127)(77,103)(78,104)(79,101)(80,102)(81,115)(82,116)(83,113)(84,114)(85,111)(86,112)(87,109)(88,110)(89,123)(90,124)(91,121)(92,122)(93,119)(94,120)(95,117)(96,118), (1,79)(2,80)(3,77)(4,78)(5,125)(6,126)(7,127)(8,128)(9,37)(10,38)(11,39)(12,40)(13,18)(14,19)(15,20)(16,17)(21,26)(22,27)(23,28)(24,25)(29,34)(30,35)(31,36)(32,33)(41,48)(42,45)(43,46)(44,47)(49,56)(50,53)(51,54)(52,55)(57,64)(58,61)(59,62)(60,63)(65,72)(66,69)(67,70)(68,71)(73,99)(74,100)(75,97)(76,98)(81,88)(82,85)(83,86)(84,87)(89,96)(90,93)(91,94)(92,95)(101,106)(102,107)(103,108)(104,105)(109,114)(110,115)(111,116)(112,113)(117,122)(118,123)(119,124)(120,121), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,93,77,92)(2,89,78,94)(3,95,79,90)(4,91,80,96)(5,114,127,111)(6,112,128,115)(7,116,125,109)(8,110,126,113)(9,26,39,23)(10,24,40,27)(11,28,37,21)(12,22,38,25)(13,36,20,29)(14,30,17,33)(15,34,18,31)(16,32,19,35)(41,57,46,62)(42,63,47,58)(43,59,48,64)(44,61,45,60)(49,67,54,72)(50,69,55,68)(51,65,56,70)(52,71,53,66)(73,81,97,86)(74,87,98,82)(75,83,99,88)(76,85,100,84)(101,124,108,117)(102,118,105,121)(103,122,106,119)(104,120,107,123), (1,114,106,84)(2,81,107,115)(3,116,108,82)(4,83,105,113)(5,117,100,95)(6,96,97,118)(7,119,98,93)(8,94,99,120)(9,29,66,63)(10,64,67,30)(11,31,68,61)(12,62,65,32)(13,55,47,21)(14,22,48,56)(15,53,45,23)(16,24,46,54)(17,25,43,51)(18,52,44,26)(19,27,41,49)(20,50,42,28)(33,40,59,72)(34,69,60,37)(35,38,57,70)(36,71,58,39)(73,121,128,91)(74,92,125,122)(75,123,126,89)(76,90,127,124)(77,111,103,85)(78,86,104,112)(79,109,101,87)(80,88,102,110), (1,20,77,13)(2,17,78,14)(3,18,79,15)(4,19,80,16)(5,11,127,37)(6,12,128,38)(7,9,125,39)(8,10,126,40)(21,85,28,84)(22,86,25,81)(23,87,26,82)(24,88,27,83)(29,119,36,122)(30,120,33,123)(31,117,34,124)(32,118,35,121)(41,102,46,105)(42,103,47,106)(43,104,48,107)(44,101,45,108)(49,113,54,110)(50,114,55,111)(51,115,56,112)(52,116,53,109)(57,91,62,96)(58,92,63,93)(59,89,64,94)(60,90,61,95)(65,73,70,97)(66,74,71,98)(67,75,72,99)(68,76,69,100)>;

G:=Group( (1,77)(2,78)(3,79)(4,80)(5,127)(6,128)(7,125)(8,126)(9,39)(10,40)(11,37)(12,38)(13,20)(14,17)(15,18)(16,19)(21,28)(22,25)(23,26)(24,27)(29,36)(30,33)(31,34)(32,35)(41,46)(42,47)(43,48)(44,45)(49,54)(50,55)(51,56)(52,53)(57,62)(58,63)(59,64)(60,61)(65,70)(66,71)(67,72)(68,69)(73,97)(74,98)(75,99)(76,100)(81,86)(82,87)(83,88)(84,85)(89,94)(90,95)(91,96)(92,93)(101,108)(102,105)(103,106)(104,107)(109,116)(110,113)(111,114)(112,115)(117,124)(118,121)(119,122)(120,123), (1,106)(2,107)(3,108)(4,105)(5,100)(6,97)(7,98)(8,99)(9,66)(10,67)(11,68)(12,65)(13,47)(14,48)(15,45)(16,46)(17,43)(18,44)(19,41)(20,42)(21,55)(22,56)(23,53)(24,54)(25,51)(26,52)(27,49)(28,50)(29,63)(30,64)(31,61)(32,62)(33,59)(34,60)(35,57)(36,58)(37,69)(38,70)(39,71)(40,72)(73,128)(74,125)(75,126)(76,127)(77,103)(78,104)(79,101)(80,102)(81,115)(82,116)(83,113)(84,114)(85,111)(86,112)(87,109)(88,110)(89,123)(90,124)(91,121)(92,122)(93,119)(94,120)(95,117)(96,118), (1,79)(2,80)(3,77)(4,78)(5,125)(6,126)(7,127)(8,128)(9,37)(10,38)(11,39)(12,40)(13,18)(14,19)(15,20)(16,17)(21,26)(22,27)(23,28)(24,25)(29,34)(30,35)(31,36)(32,33)(41,48)(42,45)(43,46)(44,47)(49,56)(50,53)(51,54)(52,55)(57,64)(58,61)(59,62)(60,63)(65,72)(66,69)(67,70)(68,71)(73,99)(74,100)(75,97)(76,98)(81,88)(82,85)(83,86)(84,87)(89,96)(90,93)(91,94)(92,95)(101,106)(102,107)(103,108)(104,105)(109,114)(110,115)(111,116)(112,113)(117,122)(118,123)(119,124)(120,121), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,93,77,92)(2,89,78,94)(3,95,79,90)(4,91,80,96)(5,114,127,111)(6,112,128,115)(7,116,125,109)(8,110,126,113)(9,26,39,23)(10,24,40,27)(11,28,37,21)(12,22,38,25)(13,36,20,29)(14,30,17,33)(15,34,18,31)(16,32,19,35)(41,57,46,62)(42,63,47,58)(43,59,48,64)(44,61,45,60)(49,67,54,72)(50,69,55,68)(51,65,56,70)(52,71,53,66)(73,81,97,86)(74,87,98,82)(75,83,99,88)(76,85,100,84)(101,124,108,117)(102,118,105,121)(103,122,106,119)(104,120,107,123), (1,114,106,84)(2,81,107,115)(3,116,108,82)(4,83,105,113)(5,117,100,95)(6,96,97,118)(7,119,98,93)(8,94,99,120)(9,29,66,63)(10,64,67,30)(11,31,68,61)(12,62,65,32)(13,55,47,21)(14,22,48,56)(15,53,45,23)(16,24,46,54)(17,25,43,51)(18,52,44,26)(19,27,41,49)(20,50,42,28)(33,40,59,72)(34,69,60,37)(35,38,57,70)(36,71,58,39)(73,121,128,91)(74,92,125,122)(75,123,126,89)(76,90,127,124)(77,111,103,85)(78,86,104,112)(79,109,101,87)(80,88,102,110), (1,20,77,13)(2,17,78,14)(3,18,79,15)(4,19,80,16)(5,11,127,37)(6,12,128,38)(7,9,125,39)(8,10,126,40)(21,85,28,84)(22,86,25,81)(23,87,26,82)(24,88,27,83)(29,119,36,122)(30,120,33,123)(31,117,34,124)(32,118,35,121)(41,102,46,105)(42,103,47,106)(43,104,48,107)(44,101,45,108)(49,113,54,110)(50,114,55,111)(51,115,56,112)(52,116,53,109)(57,91,62,96)(58,92,63,93)(59,89,64,94)(60,90,61,95)(65,73,70,97)(66,74,71,98)(67,75,72,99)(68,76,69,100) );

G=PermutationGroup([[(1,77),(2,78),(3,79),(4,80),(5,127),(6,128),(7,125),(8,126),(9,39),(10,40),(11,37),(12,38),(13,20),(14,17),(15,18),(16,19),(21,28),(22,25),(23,26),(24,27),(29,36),(30,33),(31,34),(32,35),(41,46),(42,47),(43,48),(44,45),(49,54),(50,55),(51,56),(52,53),(57,62),(58,63),(59,64),(60,61),(65,70),(66,71),(67,72),(68,69),(73,97),(74,98),(75,99),(76,100),(81,86),(82,87),(83,88),(84,85),(89,94),(90,95),(91,96),(92,93),(101,108),(102,105),(103,106),(104,107),(109,116),(110,113),(111,114),(112,115),(117,124),(118,121),(119,122),(120,123)], [(1,106),(2,107),(3,108),(4,105),(5,100),(6,97),(7,98),(8,99),(9,66),(10,67),(11,68),(12,65),(13,47),(14,48),(15,45),(16,46),(17,43),(18,44),(19,41),(20,42),(21,55),(22,56),(23,53),(24,54),(25,51),(26,52),(27,49),(28,50),(29,63),(30,64),(31,61),(32,62),(33,59),(34,60),(35,57),(36,58),(37,69),(38,70),(39,71),(40,72),(73,128),(74,125),(75,126),(76,127),(77,103),(78,104),(79,101),(80,102),(81,115),(82,116),(83,113),(84,114),(85,111),(86,112),(87,109),(88,110),(89,123),(90,124),(91,121),(92,122),(93,119),(94,120),(95,117),(96,118)], [(1,79),(2,80),(3,77),(4,78),(5,125),(6,126),(7,127),(8,128),(9,37),(10,38),(11,39),(12,40),(13,18),(14,19),(15,20),(16,17),(21,26),(22,27),(23,28),(24,25),(29,34),(30,35),(31,36),(32,33),(41,48),(42,45),(43,46),(44,47),(49,56),(50,53),(51,54),(52,55),(57,64),(58,61),(59,62),(60,63),(65,72),(66,69),(67,70),(68,71),(73,99),(74,100),(75,97),(76,98),(81,88),(82,85),(83,86),(84,87),(89,96),(90,93),(91,94),(92,95),(101,106),(102,107),(103,108),(104,105),(109,114),(110,115),(111,116),(112,113),(117,122),(118,123),(119,124),(120,121)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,93,77,92),(2,89,78,94),(3,95,79,90),(4,91,80,96),(5,114,127,111),(6,112,128,115),(7,116,125,109),(8,110,126,113),(9,26,39,23),(10,24,40,27),(11,28,37,21),(12,22,38,25),(13,36,20,29),(14,30,17,33),(15,34,18,31),(16,32,19,35),(41,57,46,62),(42,63,47,58),(43,59,48,64),(44,61,45,60),(49,67,54,72),(50,69,55,68),(51,65,56,70),(52,71,53,66),(73,81,97,86),(74,87,98,82),(75,83,99,88),(76,85,100,84),(101,124,108,117),(102,118,105,121),(103,122,106,119),(104,120,107,123)], [(1,114,106,84),(2,81,107,115),(3,116,108,82),(4,83,105,113),(5,117,100,95),(6,96,97,118),(7,119,98,93),(8,94,99,120),(9,29,66,63),(10,64,67,30),(11,31,68,61),(12,62,65,32),(13,55,47,21),(14,22,48,56),(15,53,45,23),(16,24,46,54),(17,25,43,51),(18,52,44,26),(19,27,41,49),(20,50,42,28),(33,40,59,72),(34,69,60,37),(35,38,57,70),(36,71,58,39),(73,121,128,91),(74,92,125,122),(75,123,126,89),(76,90,127,124),(77,111,103,85),(78,86,104,112),(79,109,101,87),(80,88,102,110)], [(1,20,77,13),(2,17,78,14),(3,18,79,15),(4,19,80,16),(5,11,127,37),(6,12,128,38),(7,9,125,39),(8,10,126,40),(21,85,28,84),(22,86,25,81),(23,87,26,82),(24,88,27,83),(29,119,36,122),(30,120,33,123),(31,117,34,124),(32,118,35,121),(41,102,46,105),(42,103,47,106),(43,104,48,107),(44,101,45,108),(49,113,54,110),(50,114,55,111),(51,115,56,112),(52,116,53,109),(57,91,62,96),(58,92,63,93),(59,89,64,94),(60,90,61,95),(65,73,70,97),(66,74,71,98),(67,75,72,99),(68,76,69,100)]])

Matrix representation of C23.739C24 in GL10(𝔽5)

1000000000
0100000000
0010000000
0001000000
0000100000
0000010000
0000004000
0000000400
0000000040
0000000004
,
1000000000
0100000000
0040000000
0004000000
0000400000
0000040000
0000004000
0000000400
0000000040
0000000004
,
4000000000
0400000000
0010000000
0001000000
0000100000
0000010000
0000004000
0000000400
0000000040
0000000004
,
3000000000
0300000000
0020300000
0000410000
0040300000
0041300000
0000001031
0000000112
0000003140
0000001204
,
0300000000
2000000000
0040000000
0041000000
0000400000
0030010000
0000003021
0000000313
0000002120
0000001302
,
0100000000
1000000000
0020000000
0002000000
0040300000
0040030000
0000000010
0000000001
0000004000
0000000400
,
4000000000
0400000000
0013000000
0004000000
0003010000
0003100000
0000000100
0000004000
0000000004
0000000010

G:=sub<GL(10,GF(5))| [1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4],[3,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,2,0,4,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,4,3,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,1,0,0,0,0,0,0,0,1,1,2,0,0,0,0,0,0,3,1,4,0,0,0,0,0,0,0,1,2,0,4],[0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,4,4,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,0,2,1,0,0,0,0,0,0,0,3,1,3,0,0,0,0,0,0,2,1,2,0,0,0,0,0,0,0,1,3,0,2],[0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,4,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0],[4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,4,3,3,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0] >;

C23.739C24 in GAP, Magma, Sage, TeX

C_2^3._{739}C_2^4
% in TeX

G:=Group("C2^3.739C2^4");
// GroupNames label

G:=SmallGroup(128,1571);
// by ID

G=gap.SmallGroup(128,1571);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,120,758,723,184,794,185,80]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=1,d^2=c*a=a*c,e^2=g^2=a,f^2=b,a*b=b*a,e*d*e^-1=a*d=d*a,a*e=e*a,g*f*g^-1=a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,g*e*g^-1=a*b*e>;
// generators/relations

Export

Character table of C23.739C24 in TeX

׿
×
𝔽